

耐火物製品の化学分析方法-第5部:クロム・マグネシア質耐火物

JIS R 2212-5: 2006

(TARJ/JSA)

平成 18年 3月 25日 制定

日本工業標準調査会 審議

(日本規格協会 発行)

日本工業標準調査会標準部会 窯業技術専門委員会 構成表

	氏名				所属
(委員会長代理	植	松	敬	\equiv	長岡技術科学大学
副委員会長)					
(委員)	安	藤	秀	征	黒崎播磨株式会社
	井	田	全	彦	板硝子協会
	荻	原	行	正	鹿島建設株式会社
	小	澤	宏	_	JFE スチール株式会社
	影	Щ	雅	英	日東紡績株式会社
	阪	井	博	明	日本ガイシ株式会社
	福	泉	秀	明	東邦テナックス株式会社
	町	田	隆	志	株式会社日立製作所
	山	内	幸	彦	独立行政法人産業技術総合研究所

主 務 大 臣:経済産業大臣 制定:平成 18.3.25

官報公示:平成18.3.27 原案作成者:耐火物技術協会

(〒104-0061 東京都中央区銀座 7-3-13 ニューギンザビル TEL 03-3572-0705)

財団法人日本規格協会

(〒107-8440 東京都港区赤坂 4-1-24 TEL 03-5770-1571)

審 議 部 会:日本工業標準調査会 標準部会(部会長 二瓶 好正)

審議専門委員会:窯業技術専門委員会(委員会長代理 植松 敬三)

この規格についての意見又は質問は、上記原案作成者又は経済産業省産業技術環境局 基準認証ユニット産業基盤標準 化推進室(〒100-8901 東京都千代田区霞が関 1-3-1)にご連絡ください。

なお、日本工業規格は、工業標準化法第 15 条の規定によって、少なくとも 5 年を経過する日までに日本工業標準調査 会の審議に付され、速やかに、確認、改正又は廃止されます。

R 2212-5: 2006

まえがき

この規格は、工業標準化法第 12 条第 1 項の規定に基づき、耐火物技術協会(TARJ)/財団法人日本規格協会(JSA)から、工業標準原案を具して日本工業規格を制定すべきとの申出があり、日本工業標準調査会の審議を経て、経済産業大臣が制定した日本工業規格である。

これによって JIS R 2212:1998 及び JIS R 2901:1994 は廃止され, JIS R 2212-1, JIS R 2212-2, JIS R 2212-3, JIS R 2212-4, JIS R 2212-5 に置き換えられる。

この規格の一部が、技術的性質をもつ特許権、出願公開後の特許出願、実用新案権、又は出願公開後の 実用新案登録出願に抵触する可能性があることに注意を喚起する。経済産業大臣及び日本工業標準調査会 は、このような技術的性質をもつ特許権、出願公開後の特許出願、実用新案権、又は出願公開後の実用新 案登録出願にかかわる確認について、責任をもたない。

JIS R 2212 の規格群には、次に示す部編成がある。

JIS R 2212-1 第 1 部:粘土質耐火物

JIS R 2212-2 第2部: けい石質耐火物

JIS R 2212-3 第3部: 高アルミナ質耐火物

JIS R 2212-4 第 4 部:マグネシア及びドロマイト質耐火物

JIS R 2212-5 第5部: クロム・マグネシア質耐火物

これら5部の日本工業規格は、分析対象となる構成成分の比が相互に大きく異なるため、分析方法は、大きく異なるが、分析上の基本的理念は、相互に補完関係にある。また、これらの日本工業規格は、**ISO/TC33** (耐火物)に提案され、国際規格原案の母体となっている。

目 次

	ページ
1.	適用範囲
2.	引用規格
3.	一般事項
4.	分析項目
5.	定量範囲
6.	試料
6.1	試料採取及び調製
6.2	試料のはかり方 ····································
7.	分析値のまとめ方 ····································
7.1	分析回数
7.2	空試験2
7.3	分析値の表示
7.4	分析値の検討・採択3
7.5	試験報告
8.	強熱減量の定量方法······· 3
8.1	定量方法3
8.2	重量法
9.	酸化けい素 (Ⅳ) の定量方法
9.1	定量方法の区分
9.2	凝集重量吸光光度法併用法
9.3	モリブデン青吸光光度法···································
9.4	ICP
10.	陽イオン交換分離及び溶出液の処理12
10.1	要旨12
10.2	試薬12
10.3	器具13
10.4	試料のはかりとり量·······13
10.5	操作
10.6	空試験14
11.	酸化アルミニウムの定量方法 ····································
11.1	定量方法の区分14
11.2	CyDTA- 亜鉛逆滴定法····································
11.3	ICP 発光分光分析法··································
11.4	原子吸光法
12.	酸化鉄(Ⅲ)の定量方法18

	× ×	ージ
12.1	定量方法の区分	18
12.2	1,10-フェナントロリン吸光光度法	18
12.3	CyDTA-亜鉛逆滴定法······	19
12.4	ICP 発光分光分析法······	20
13.	酸化チタン (IV) の定量方法	20
13.1	定量方法の区分	20
13.2	ジアンチピリルメタン吸光光度法	20
13.3	ICP 発光分光分析法······	21
14.	酸化マンガン (II) の定量方法 ····································	22
14.1	定量方法の区分	22
14.2	原子吸光法	22
14.3	ICP 発光分光分析法······	22
15.	酸化カルシウムの定量方法	23
15.1	定量方法の区分	23
15.2	原子吸光法	23
15.3	ICP 発光分光分析法······	24
16.	酸化マグネシウムの定量方法	26
16.1	定量方法の区分	26
16.2	EDTA 滴定-ICP 発光分光併用法·······	26
17.	酸化ナトリウムの定量方法	27
17.1	定量方法の区分	27
17.2	炎光光度法	28
17.3	原子吸光法	29
17.4	ICP 発光分光分析法	31
18.	酸化カリウムの定量方法	31
18.1	定量方法の区分	31
18.2	炎光光度法	31
18.3	原子吸光法	32
18.4	ICP 発光分光分析法	32
19.	酸化クロム (皿) の定量方法	33
19.1	定量方法の区分	33
19.2	炭酸ナトリウム・ほう酸融解 - ニクロム酸カリウム滴定法	33
19.3	混酸分解‐ニクロム酸カリウム滴定法	34
19.4	原子吸光法	35
19.5	ICP 発光分光分析法······	
20.	酸化ジルコニウム (IV) の定量方法	36
20.1	定量方法の区分	36
20.2	キシレノールオレンジ吸光光度法	36
20.3	ICP 発光分光分析法·······	37

R 2212-5:2006 目次

		ページ
21.	酸化りん(V)の定量方法	37
21.1	定量方法の区分	37
21.2	. モリブデン青吸光光度法···································	38
21.3	3 ICP 発光分光分析法·······	39
22.	酸化ほう素(Ⅲ)の定量方法	40
22.1	定量方法の区分	40
22.2	. クルクミン吸光光度法(ロソシアニン法) ····································	40
22.3	3 ICP	42
解	説······	47

JIS R 2212-5 : 2006

耐火物製品の化学分析方法-第5部:クロム・マグネシア質耐火物

Methods for chemical analysis of refractory products— Part 5:Chrome-magnesia refractories

- 1. **適用範囲** この規格は、クロム・マグネシア質耐火物及びクロム・マグネシア質原料の化学分析方法 について規定する。
- 2. **引用規格 付表 1** に示す規格は、この規格に引用されることによって、この規格の規定の一部を構成する。これらの引用規格は、その最新版(追補を含む。)を適用する。
- **3. 一般事項** 分析方法の一般事項については, **JIS K 0050**, **JIS K 0115**, **JIS K 0116** 及び **JIS K 0121** の 規定による。
- 4. 分析項目 この規格で規定する分析項目は、次による。
- a) 強熱減量 (LOI)
- b) 酸化けい素(IV) (SiO₂)
- c) 酸化アルミニウム (Al₂O₃)
- **d**) 酸化鉄(Ⅲ) (全鉄分) (Fe₂O₃)
- e) 酸化チタン(IV) (TiO₂)
- f) 酸化マンガン(II) (MnO)
- g) 酸化カルシウム (CaO)
- h) 酸化マグネシウム (MgO)
- i) 酸化ナトリウム (Na₂O)
- j) 酸化カリウム (K₂O)
- k) 酸化クロム(III) (Cr₂O₃)
- I) 酸化ジルコニウム(IV) (ZrO₂)
- **m**) 酸化りん(V) (P₂O₅)
- n) 酸化ほう素(Ⅲ) (B₂O₃)
- **5. 定量範囲** この規格の定量範囲は**,表1**による。ただし**,**この値は**,**強熱減量測定後の試料における値とする。