

JAPANESE INDUSTRIAL STANDARD

Testing methods for in-plane shear properties of carbon fiber reinforced plastics by $\pm\,45^\circ$ tension method and two pairs of rails method

JIS K 7079-1991

Translated and Published

by

Japanese Standards Association

In the event of any doubt arising, the original Standard in Japanese is to be final authority.

JAPANESE INDUSTRIAL STANDARD

JIS

Testing methods for in-plane shear properties of carbon fiber reinforced plastics by $\pm 45^{\circ}$ tension method and two pairs of rails method

K 7079-1991

1. Scope

This Japanese Industrial Standard specifies the methods for testing the in-plane shear properties of carbon fiber reinforced plastics (hereafter referred to as the "CFRP") by \pm 45° tension method and two pairs of rails method.

- Remarks 1. This testing method covers the determination of the in-plane shear strength, in-plane shear strain at failure, in-plane shear modulus of elasticity, in-plane shear stress strain curve of CFRP.
 - 2. The units and numerical values given in { } in this Standard are based on the conventional unit system and are appended informative reference.
 - 3. Applicable Standards to this Standard are shown in the following.

JIS	В	7502	Micrometer	Callipers	for	External	Measurement

JIS B 7507 Vernier Callipers

JIS K 6900 Glossary of Terms Used in Plastic Industry

JIS K 7072 Preparation of Carbon Fibre Reinforced Plastic Panels for Test Purpose

JIS K 7100 Standard Atmospheres for Conditioning and Testing of Plastics

JIS Z 8401 Rules for Rounding off of Numerical Values

2. Definitions

For the main terms used in this Standard the definition in JIS K 6900 apply, and the rest of the terms shall be as follows.

- (1) in-plane shear strength The in-plane shear strength obtainable when the maximum in-plane shear load is devided by the original cross-sectional area of test specimen. It should be noted, however, that in the method B this is the value obtainable when the maximum in-plane shear load applied to test specimen is devided by the cross-sectional area of the face of laminate of test specimen.
- (2) $\frac{\text{in-plane shear strain}}{\text{test specimen.}}$ Strain caused by in-plane shear stress applied to
- (3) <u>in-plane shear strain at failure</u> In-plane shear strain corresponding to the maximum in-plane shear load.