

JAPANESE INDUSTRIAL STANDARD

Translated and Published by Japanese Standards Association

JIS K 0102-2:2022

Testing methods for industrial water and industrial wastewater — Part 2: Inorganic anions, ammonium ion, organic nitrogen, total nitrogen and total phosphorus

ICS 13.060.25;13.060.30;13.060.50

Reference number: JIS K 0102-2: 2022 (E)

K 0102-2: 2022

Date of Establishment: 2022-10-20

Date of Public Notice in Official Gazette: 2022-10-20

Investigated by: Japanese Industrial Standards Committee

Standards Board for ISO area

Technical Committee on Chemical Products and

Analytical Methods

JIS K 0102-2: 2022, First English edition published in 2024-10

Translated and published by: Japanese Standards Association Mita Avanti, 3-11-28, Mita, Minato-ku, Tokyo, 108-0073 JAPAN

In the event of any doubts arising as to the contents, the original JIS is to be the final authority.

© JSA 2024

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Printed in Japan HN

Contents

	Page
1	Scope
2	Normative references ····································
3	Terms and definitions · · · · · 1
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	General requirements1Chemical analysis1Absorptiometry1Flow analysis2Ion chromatography2Ion-selective electrode method2Dynamic range2Repeatability2Water used for tests2Reagents used for tests and methods for washing them5Management of quality of test results5Sample6Working curve7
5 5.1 5.2 5.3 5.4 5.5 5.6	Fluorine compounds 8 General 8 Pretreatment (steam distillation) 8 Lanthanum-alizarin complexone absorptiometry 13 Flow analysis (lanthanum-alizarin complexone colouring) 15 Ion chromatography 16 Ion-selective electrode method 22
6 6.1 6.2 6.3 6.4	$\begin{array}{c} \text{Chloride ions (Cl}^-) & 27 \\ \text{General} & 27 \\ \text{Silver-nitrate titration method} & 27 \\ \text{Ion chromatography} & 30 \\ \text{Ion-selective electrode method} & 30 \\ \end{array}$
7 7.1 7.2 7.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8 8.1 8.2	Bromide ions (Br ⁻) 40 General 40 Iodometry 41

K 0102-2: 2022

8.3	Ion chromatography·····	43
9	Cyanide compounds ·····	
9.1	General ·····	
9.2	Cyanide · · · · · · · · · · · · · · · · · · ·	
9.3	Total cyanide · · · · · · · · · · · · · · · · · · ·	
9.4	Pyridine-pyrazolone absorptiometry · · · · · · · · · · · · · · · · · · ·	52
9.5	4-Pyridinecarboxylic acid-pyrazolone absorptiometry ······	55
9.6	Flow analysis (4-pyridinecarboxylic acid-pyrazolone colouring) ····	
9.7	Ion-selective electrode method ·····	56
10	Sufide ions (S $^{2-}$) · · · · · · · · · · · · · · · · · · ·	60
10.1	General ·····	60
10.2	Preservation treatment ·····	60
10.3	Filtration when dissolved sulfide ions are determined	61
10.4	Separation procedure ·····	
10.5	Iodometry ·····	65
10.6	Methylene blue absorptiometry · · · · · · · · · · · · · · · · · · ·	67
11	Sulfite ions (SO $_3^{2-}$)	70
11.1	General	
11.2	Iodometry ·····	
	Sulfate ions (SO ₄ $^{2-}$)	
12	General	
12.1	Gravimetry	
12.2 12.3	Barium chromate absorptiometry ······	
12.3 12.4	Barium chromate-diphenylcarbazide absorptiometry	
12.4 12.5	Ion chromatography ·······	
13	Ammonium ions (NH_4^+) ······	
13.1	General ····	
13.2	Pretreatment ·····	_
13.3	Neutralization titrimetry ·····	
13.4	Indophenol blue absorptiometry	
13.5	Salicylic acid-indophenol blue absorptiometry	92
13.6	Flow analysis (indophenol blue colouring)	93
13.7	Ion chromatography	
13.8	Ion-selective electrode method ······	
14	Nitrite ions (NO $_2$ ⁻) ······	
14.1	General ·····	
14.2	Naphthylethylenediamine absorptiometry ·····	104
14.3	Flow analysis (naphthylethylenediamine colouring)	107
14.4	Ion chromatography·····	107
15	Nitrate ions (NO_3^-)	108
15.1	General	
15.2	Reducing distillation — neutralization titrimetry ·····	

15.3	Reducing distillation — indophenol blue absorptiometry ······	$\cdots 110$
15.4	Reducing distillation — salicylic acid-indophenol bule absorptiometry	
15.5	Brucine absorptiometry ·····	…114
15.6	Copper-cadmium column reduction — naphthylethylenediamine ab-	
	sorptiometry ·····	…116
15.7	Flow analysis (copper-cadmium column reduction — naphthyleth-	
	ylenediamine colouring) · · · · · · · · · · · · · · · · · · ·	…119
15.8	Ion chromatography ·····	$\cdots 120$
16	Organic nitrogen ·····	120
16.1	General	
16.2	Pretreatment (Kjeldahl method) ······	
16.3	Neutralization titrimetry	
16.4	Indophenol blue absorptiometry ······	
16.5	Salicylic acid-indophenol blue absorptiometry	
17	Total nitrogen	
17.1	General	_
17.2	Summation method	
17.3	Oxidation decomposition — ultraviolet absorptiometry ······	129
17.4	Oxidation decomposition — copper-cadmium column reduction —	400
	naphthylethylenediamine absorptiometry	133
17.5	Flow analysis (oxidation decomposition–ultraviolet absorption or cop-	
	per-cadmium column reduction — naphthylethylenediamine colour-	
- - -	ing) ·····	
17.6	Total nitrogen analysis after thermal decomposition ······	
18	Phosphorus compounds and total phosphorus ······	…140
18.1	General ·····	$\cdots 140$
18.2	Phosphate ions (PO $_4$ ³⁻) ····································	
18.2.1	Molybdenum blue absorptiometry · · · · · · · · · · · · · · · · · · ·	
18.2.2	Flow analysis (molybdenum blue colouring) · · · · · · · · · · · · · · · · · · ·	
18.2.3	Ion chromatography ·····	
18.3	Hydrolysable phosphorus · · · · · · · · · · · · · · · · · · ·	
18.3.1	Molybdenum blue absorptiometry · · · · · · · · · · · · · · · · · · ·	$\cdots 144$
18.3.2	Flow analysis (molybdenum blue colouring) · · · · · · · · · · · · · · · · · · ·	$\cdots 145$
18.4	Total phosphorus · · · · · · · · · · · · · · · · · · ·	$\cdots 146$
18.4.1	Potassium peroxodisulfate decomposition method ······	
18.4.2	Nitric acid-perchloric acid decomposition method	…149
18.4.3	Nitric acid-sulfuric acid decomposition method ·····	…151
18.4.4	Molybdenum blue absorptiometry ·····	$\cdots 152$
18.4.5	Molybdenum blue absorptiometry by solvent extraction ······	$\cdots 157$
18.4.6	Flow analysis (oxidation decomposition-molybdenum blue colouring) ···	
19	Silica ·····	
19.1	General ·····	
19.1	Ionic silica ······	
10.4	101110 011104	TO:)

K 0102-2: 2022

19.2.1 Molybdenu	ım yellow absorptiometry ······159
	m blue absorptiometry ······160
	and colloidal silica ······162
19.4 Total silica	163
	h sodium carbonate — molybdenum yellow absorptiometry with sodium carbonate — molybdenum blue absorptiometry163
	y ·······164
Annex A (informat	ive) Distillation operation for fluorine compound166
Annex B (informat	ive) Examples of eluents used for ion chromatography ······169
Annex C (informat	ive) Determination of fluoride ions by potentiometric titration using ion-selective electrode ·······171
Annex D (informat	ive) Determination of chloride ions by mercury (II) thio- cyanate absorptiometry · · · · · · · · · · · · · · · · · · ·
Annex E (informat	ive) Determination of chloride ions by potentiometric ti- tration using ion-selective electrode · · · · · · · · · · · · · · · · · · ·
Annex F (informati	ive) Determination of iodide ions by ion-selective electrode method · · · · · · · · · · · · · · · · · · ·
Annex G (informat	ive) Determination of bromide ions by ion-selective electrode method · · · · · · · · · · · · · · · · · · ·
Annex H (informat	ive) Determination of cyanide ions by potentiometric titration using ion-selective electrode · · · · · · · · · · · · · · · · · · ·
Annex I (informati	ve) Determination of sulfide ions by ion-selective electrode method · · · · · · · · · · · · · · · · · · ·
Annex J (informati	ve) Determination using stripping apparatus for dissolved sulfide determination187
Annex K (informat	ive) Determination of sulfate ions by barium sulfate turbidimetry190
Annex L (informat	ive) Standard addition method for ammonium ion determination by ion-selective electrode method192
Annex M (informat	tive) Determination of nitrate ions by ion-selective electrode method · · · · · · · · · · · · · · · · · · ·
Annex N (informat	ive) Normative references ······198
Annex O (informat	ive) Comparison table between JIS and corresponding In- ternational Standards203

Foreword

This Japanese Industrial Standard has been established by the Minister of Economy, Trade and Industry, through deliberations at the Japanese Industrial Standards Committee in accordance with the Industrial Standardization Act.

This **JIS** document is protected by the Copyright Act.

Attention is drawn to the possibility that some parts of this Standard may conflict with patent rights, published patent application or utility model rights. The relevant Minister and the Japanese Industrial Standards Committee are not responsible for identifying any of such patent rights, published patent application or utility model rights.

JIS K 0102 series consists of the following 5 parts under the general title *Testing methods for industrial water and industrial wastewater*:

- Part 1: Test methods for general physics and chemistries
- Part 2: Inorganic anions, ammonium ion, organic nitrogen, total nitrogen and total phosphorus
- Part 3: Metals
- Part 4: Organic substances (to be published)
- Part 5: Microorganisms and biological effect (to be published)

Blank

Testing methods for industrial water and industrial wastewater — Part 2: Inorganic anions, ammonium ion, organic nitrogen, total nitrogen and total phosphorus

JIS K 0102-2: 2022

1 Scope

This Japanese Industrial Standard specifies the test methods for inorganic anions, ammonium ions, organic nitrogen, total nitrogen and total phosphorus in industrial water and industrial wastewater discharged from factories including places of business (hereafter referred to as industrial wastewater). Unless otherwise stated in the individual test clauses, the tests shall apply to both industrial water and industrial wastewater.

NOTE For the purpose of this Standard, inorganic anions refer to fluorine compounds, chloride ions, iodide ions, bromide ions, cyanide compounds, sulfide ions, sulfite ions, sulfate ions, nitrite ions, nitrate ions, phosphorus compounds, and silica.

For test methods in this Standard for which a corresponding International Standard(s) exists, the number(s) of the International Standard(s) and the symbol of degree of its correspondence with relevant **JIS** test requirements are shown in applicable clauses.

Where modifications have been made in the technical contents of the corresponding International Standard(s), the modifications and their explanations are given in Annex O.

2 Normative references

Part or all of the provisions of the standards listed in Annex N, through reference in this text, constitute provisions of this Standard. The most recent editions of the standards (including amendments) listed therein shall be applied.

3 Terms and definitions

For the purpose of this Standard, the terms and definitions given in **JIS K 0211** and **JIS K 0215** apply.

4 General requirements

4.1 Chemical analysis

General requirements of chemical analysis are provided in **JIS K 0050**.

4.2 Absorptiometry

4.2.1 General

General requirements of absorptiometry are provided in **JIS K 0115**.