

JAPANESE INDUSTRIAL STANDARD

Test method for tensile properties of fiber reinforced metals

JIS H 7405-1993

Translated and Published

by

Japanese Standards Association

In the event of any doubt arising, the original Standard in Japanese is to be final authority.

JAPANESE INDUSTRIAL STANDARD

JIS

Test method for tensile properties of fiber reinforced metals

H 7405-1993

- 1. <u>Scope</u> This Japanese Industrial Standard specifies the test method for tensile properties at room temperature and at a high temperature of metal matrix composites reinforced by continuous fiber.
 - Remarks 1. The test method for tensile properties at a high temperature of fiber reinforced metals shall be in accordance with Annex.
 - 2. The following standards are cited in this Standard:
 - JIS B 7502 Micrometer callipers for external measurement
 - JIS B 7507 Vernier, dial and digital callipers
 - JIS B 7721 Tensile testing machines
 - JIS B 7741 Extensometers used in metallic material tensile testing
 - JIS C 1602 Thermocouples
 - JIS H 7006 Glossary of terms used in metal matrix composites
 - JIS Z 2241 Method of tensile test for metallic materials
 - JIS Z 8401 Rules for rounding off of numerical values
- 2. <u>Definitions</u> For the main terms used in this Standard the definitions in JIS \overline{H} 7006 and JIS Z 2241 apply, and the rest of the terms shall be as follows:
- (1) <u>tensile stress</u> Is a value obtained by dividing tensile load applied to a test piece at any point of time by the original sectional area of the gage part of the test piece.
- (2) <u>tensile strength</u> Is the maximum tensile stress applied to a test piece in a tension test.
- (3) strain Is a dimensionless quantity obtained by dividing the variation in the gage length of a test piece by the original gage length.
- (4) <u>fracture strain</u> Is the maximum strain applied to a test piece in a tension test.
- (5) longitudinal elastic modulus under tension
 - (a) A value obtained from the initial gradient part in a tensile load strain diagram or a tensile stress strain diagram. Its quantity symbol shall be E_1 (see Fig. 1).
 - (b) A value obtained from the gradient part of the tangent drawn to a tensile load strain diagram or a tensile stress strain diagram at 0.5% in strain. Its quantity symbol shall be E_2 (see Fig. 1).