

JAPANESE INDUSTRIAL STANDARD

Measuring methods for ferrite cores for microwave device

JIS C 2565-1992

Translated and Published

by

Japanese Standards Association

In the event of any doubt arising, the original Standard in Japanese is to be final authority.

JAPANESE INDUSTRIAL STANDARD

Measuring methods for ferrite cores for C 2565-1992 microwave device

1. Scope

This Japanese Industrial Standard specifies testing methods for ferrite cores to be used for microwave devices in which gyromagnetic phenomenon is utilized (hereafter referred to as cores).

Remarks: The following Standards are cited in this Standard:

JIS B 7725-Vickers Hardness Testing Machines

JIS C 2501-Methods of Test for Permanent Magnet

JIS C 3202-Enameled Winding Wires

JIS Z 2244-Method of Vickers Hardness Test

JIS Z 8703-Standard Atmospheric Conditions for Testing

2. Definitions and symbols

For the purpose of this standard the following principal definitions and symbols shall apply.

- (1) saturation magnetization M_s The maximum magnetization which can be achieved by a core.
- (2) complex permittivity $\underline{\varepsilon}$ The complex quantity given below which shows the relation between vector quantity expressing a.c. electric displacement and vector quantity expressing a.c. electric field strength.

$$\underline{\varepsilon} = \frac{1}{\varepsilon_0} \left(\frac{\underline{D}}{E} \right) \quad \quad (1)$$

where, $\epsilon_0 = 8.854 \times 10^{-12}$: absolute permittivity of vacuum (F/m)

 \underline{E} : a.c. electric field strength in vector expression (V/m)

 \underline{D} : a.c. electric flux density in vector expression (C/m^2)

If real component and imaginary component of complex permittivity are denoted as ε' and ε'' respectively, then $\underline{\varepsilon}$ is expressed as follows:

$$\underline{\varepsilon} = \varepsilon' - j\varepsilon'' \quad \dots \qquad (2)$$

complex permeability # The complex quantity given below which shows the relation between vector quantity expressing a.c. magnetic field strength and vector quantity expressing a.c. magnetic flux density.