WES 2805 : 2011

WES

Method of Assessment for Flaws in Fusion Welded Joints with Respect to Brittle Fracture and Fatigue Crack Growth

WES 2805 : 2011

Revised on October 1, 2011

The Japan Welding Engineering Society (JWES)

In the event of any doubt arising,

the original standard in Japanese is to be final authority.

WES 2805 : 2011

Warning on the Reproduction of the JWES Standards

The permission of the Association or the acknowledgement of the source shall be required to reproduce part or all of this standard. Failure to follow either of the above requirements will result in the infringement of copyright and publishing rights.

Enactment Date:	November 30, 1976
Revision Date:	November 1, 2007 October 1, 2011
Draft Committee:	FTE Subcommittee (Chief: HAGIHARA, Yukito) of the Technical Committee (Chairman: MIYATA, Takashi) of
	JWES Iron and Steel Division
Review Committee:	JWES Standardization Committee (Chairman: KOMIYAMA, Teruhiko)

For comments and questions on this standard, please contact JWES Operations Department (9th floor of Sanpo Sakuma Building, 1-11 Kanda Sakuma-cho, Chiyoda-ku, Tokyo, 101-0025 Japan).

Contents

		Page
Intro	duction	1
1.	Scope	•••• 1
2.	Reference Standards	1
3.	Definitions	2
4.	Nomenclature	2
5.	Information Required for Assessment	 4
6.	Assessment Procedures	•••• 4
7.	Characterization of Flaw Dimensions	6
7.1	Types of Flaws to Be Assessed and Procedures for Their Characterization	6
7.2	Projection of Flaw Indication on Planes normal to Principal Stress	 7
7.3	Characterization of Flaw Shapes	8
7.4	Interactions between Adjacent Cracks	10
7.5	Interactions between Cracks and Component Free Surfaces	····14
8.	Crack Growth due to Fatigue	15
8.1	Establishment of Stress Conditions	15
8.1.1	Stresses to Be Considered in the Evaluation	15
8.1.2	Characterization of Stress Distributions	15
8.1.3	Stress Intensity Factor Ranges (ΔK) ······	17
8.2	Fatigue Crack Growth Characteristics	17
8.3	Evaluation Method for Fatigue Crack Growth Life	18
8.3.1	Calculation Formulas for Fatigue Crack Growth Life	18
8.3.2	Fatigue Crack Growth Life of Through Thickness Crack	18
8.3.3	Fatigue Crack Growth Life of Surface Crack	19
8.3.4	Fatigue Crack Growth Life of Embedded Crack	19
8.4	Damage Limit due to Fatigue Crack Growth	19
9.	Crack Dimensions and Strains Used for Assessment	20
9.1	Establishment of the Crack Characteristic Dimension $\overline{\mathrm{c}}$	20
9.2	Establishment of Local strains	23
9.2.1	Strains due to Boundary Forces ($_{\epsilon_1}$)	23
9.2.2	Strains due to Welding Residual Stresses ($_{\epsilon_{\gamma}}$)	25
9.2.3	Strains due to Stress Concentrations (ϵ_3)	26
9.2.4	Determination of Strains used for Assessment	
10.	Determination of Fracture Parameter δ······	28
11.	Determination of Material Fracture Toughness δ_{cr} ·····	29
11.1	Fracture Toughness Used for Assessment	29
11.2	CTOD Test	29

WES 2805 : 2011

11.3	Number of Specimens and Statistical Treatment29
11.4	Estimation of Fracture Toughness from Charpy Impact Test Results
12.	Judgment30
12.1	Judgment for Brittle Fracture
12.2	Judgment for Fatigue Crack Growth
13.	Calculation of K Values

Attac	hed Document (Reference)	Reliability Engineering-Based Acceptance Assessment Method	
for flaws Causing Brittle Fracture			
Introduction45			
1.	Scope		•45
2.	Acceptance Assessment Met	hod Using Partial Safety Factors	•45

Explanation53		
Introduction53		
1.	Scope55	
2.	Reference Standards55	
3.	Definitions55	
4.	Nomenclature55	
5.	Information Required for Assessment55	
6.	Assessment Procedures55	
7.	Characterization of Flaw Dimensions56	
7.1	Types of Flaws to Be Assessed and Procedures for Their Characterization	
7.2	Projection of Flaw Indication on Planes Normal to Principal Stress57	
7.3	Characterization of Flaw Shapes60	
7.4	Interactions between Adjacent Cracks60	
7.5	Interactions between Cracks and Component Free Surfaces64	
8.	Crack Growth due to Fatigue67	
8.1	Establishment of Stress Conditions68	
8.1.1	Stresses to Be Considered	
8.1.2	Characterization of Stress Distributions (Surface Cracks and Embedded Cracks)69	
8.1.3	Stress Intensity Factor Ranges (ΔK) ······69	
8.2	Fatigue Crack Growth Characteristics70	
8.3	Evaluation Method for Fatigue Crack Growth Life72	
8.3.1	Calculation Formulas for Fatigue Crack Growth Life72	
8.3.2	Fatigue Crack Growth Life of Through Thickness Crack73	
8.3.3	Fatigue Crack Growth Life of Surface Crack73	
8.4	Damage Limit due to Fatigue Crack Growth75	

9. Crack Dimensions and Strains Used for Assessment	•78
9.1 Establishment of the Crack Characteristic Dimension \overline{c}	•78
9.2 Establishment of Local Strains	•81
9.2.1 Strains due to Boundary Forces (ϵ_1)	•81
9.2.2 Strains due to Welding Residual Stresses (ϵ_2)	•85
9.2.3 Strains due to Stress Concentrations (ϵ_3)	•88
9.2.4 Determination of Strains used for Assessment	•88
10. Determination Fracture Parameter δ	•93
11. Determination of Material Fracture Toughness δ_{cr}	•96
11.1 Fracture Toughness Used for Assessment	100
11.2 CTOD Test	100
11.3 Number of Specimens and Statistical Treatment	102
11.4 Estimation of Fracture Toughness from the Charpy Impact Test Results	108
11.4.1 Base Metal and Arc Weld Metals	108
11.4.2 Multilayer Weld Joints	119
12. Judgment	122
13. Calculation of K Values	123
14. Case Studies	125
14.1 Brittle Fracture of Direct Desulfurization Pressure Vessels	125
14.2 Fracture of Large Pressed Frames	131
15. Reliability Engineering-Based Acceptance Assessment Method for Flaws Causing Brittle	
Fracture (Explanation in Attached Document)	136
15.1 Safety Factors and Reliability Engineering	136
15.2 Safety Indices	138
15.3 Introduction of Safety Indices into Flaw Assessment	141
15.4 Safety Indices and Partial Safety Factors	142
15.5 Assessment	155
15.6 Coping with Deterministic Approaches	155
16. Members of Draft Committee	158
17. Background of the Revision of WES2805	164

WES 2805 : 2011

WES 2805 : 2007 Japan Welding Engineering Society Standard Method of Assessment for Flaws in Fusion Welded Joints with Respect to Brittle Fracture and Fatigue Crack Growth

Introduction

This standard describes the guidelines for the method of assessing the acceptability of flaws in welded structures detected by various non-destructive tests during manufacturing or use. The method assesses flaws according to the functions required for structural elements from the viewpoints of fitness-for-purpose, taking full account of the service conditions of the structural elements concerned. It is a practical, simplified method, based on the results of previous studies on fracture mechanics. The standard was issued in 1976, partly revised in 1980, and completely reviewed and revised in 1997. The present edition is revised and updated from the 1997 version, based on the results of the latest development in related fields such as elastic-plastic fracture mechanics, toughness assessment methods, reliability engineering, etc.

1. Scope

This standard applies to general welded steel structures, specifying the method for assessing the brittle fracture from cracks or similar planar flaws and for assessing the damage or brittle fracture caused by the fatigue crack growth from various types of flaws in fusion welded joints.

When assuming that the final form of damage is brittle fracture, only the flaws existing in the stress concentration areas of structural elements, i.e. those surrounded by elastic stress fields, are assessed. When through-thickness flaws exist in planar joints, this standard only applies to the cases of fatigue crack growth. A pure application of fracture mechanics is sufficient to assess such relatively simple cases.

2. Reference Standards

The following standards consist of part of this standard when they are cited in the standard. The latest versions are applicable.

JIS G 0202	Glossary of terms used in iron and steel (Testing)
JIS Z 3001	Welding terms
WES 1108	Standard test method for crack-tip opening displacement fracture toughness measurement
WES 1109	Guideline for crack-tip opening displacement (CTOD) fracture toughness test method of weld
	heat-affected zone
WES 2808	Method of assessing brittle fracture in steel weldments subjected to large cyclic and dynamic
	strain