

STANDARDS Australia

Methodology Note

Mapping Global Environmental Data Standards

方法論ノート

地球環境データ規格のマッピング

英和対訳 一般財団法人 日本規格協会

Scope	3
Standards Mapping Process	4
1. Identification of Relevant Technical Committees	4
2. Standards Screening and Filtering	4
3. Thematic Categorization	4
4. Classifying Standards to Data Lifecycle Stages	5
5. Quality Assurance	6
6. Tool Development and Feedback	6
imitations	7
	7

Overview

In support of UNEP's Global Environmental Data Strategy, Standards Australia and the International Organization for Standardization (ISO) collaborated on a research project to explore the role of international standards in supporting the effective management and use of environmental data, mapping ISO's portfolio of international standards related to environmental data.

This research Methodology Note outlines the systematic approach used to identify, classify, and categorize standards related to environmental data. This note may support other Standards Development Organizations (SDOs) in undertaking their own research or mapping exercises of environmental data standards.

対象範囲	3
規格マッピングプロセス	4
1.関連する専門委員会の特定	4
2. 規格のスクリーニングとフィルタリング	4
3. テーマ別カテゴリー化	4
4. データライフサイクルの各段階への規格の分類	5
5. 品質保証	6
6. ツールの開発とフィードバック	6
制限事項	7
今後の取り組み	7

概要

UNEPの地球環境データ戦略を支援するため、オーストラリア規格協会と国際標準化機構(ISO)は、環境データの効果的な管理と利用を支援する国際規格の役割を探る研究プロジェクトに共同で取り組み、ISOの環境データ関連国際規格ポートフォリオをマッピングしました。

成果物である研究成果とインタラクティブダッシュボードは、iso.org/environmentaldata で公開されています。

この研究方法論ノートでは、環境データ関連規格を特定、分類、類型化するために 用いられる体系的なアプローチを概説しています。このノートは、他の規格開発機 関(SDO)が独自の環境データ規格に関する研究やマッピングを行う際に役立つ可 能性があります。

Scope

The objective of the research was to ensure a comprehensive and accurate list of standards aligned with the United Nations Environment Programme's (UNEP) working definition of environmental data:

"Environmental data encompasses the measurement of environmental indicators related to the pressures and drivers of degradation, the state of the environment, the impacts on ecosystems and society, and potential solutions to address and mitigate these impacts."

This definition serves as the foundational criterion for determining the relevance of each standard. In addition to this overarching definition, the research considered four focus areas of UNEP's Global Environmental Data Strategy (GEDS) while mapping standards.

- Data Quality: Ensuring environmental data is accurate, consistent, and traceable – enabling informed decision-making and policy development.
- Data Governance: Providing clear structures for managing environmental data effectively, transparently, and ethically.
- Interoperability: Enabling that environmental data collected by different organizations and technologies can work together seamlessly.
- Access and Affordability: Supporting accessible, discoverable and machine-readable data that can be used by Al systems, scientists, and communities worldwide.

対象範囲

本研究の目的は、国連環境計画(UNEP)による環境データの作業定義に準拠した、包括的かつ正確な規格リストを作成することでした。

「環境データには、環境悪化の圧力と要因、環境の状態、生態系と社会への影響、そしてこれらの影響に対処し緩和するための潜在的なソリューションに関連する環境指標の測定が含まれます。」

この定義は、各規格の関連性を判断するための基本的な基準となります。この包括的な 定義に加えて、本研究では、規格のマッピングを行う際に、UNEPの地球環境データ戦略 (GEDS)の4つの重点分野を考慮しました。

- **データ品質**:環境データの正確性,一貫性,追跡可能性を確保し,情報に基づいた意思決定と政策立案を可能にします。
- **データガバナンス**:環境データを効果的,透明性,倫理的に管理するための明確な構造を提供します。
- 相互運用性:異なる組織や技術によって収集された環境データがシームレスに連携できるようにします。
- **アクセスと手頃な価格**:世界中のAIシステム, 科学者, そしてコミュニティが利用できる. アクセス可能で, 発見可能で, 機械可読なデータをサポートします。

Standards Mapping Process

1. Identification of relevant technical committees

The first step involved reviewing all ISO Technical Committees (TCs) whose scope relates to environmental data.

2. Standards screening and filtering

All standards developed by the identified TCs were reviewed thoroughly. Determination of relevance was based on TC, standard title, and the scope/abstract. Standards not aligned with the UNEP working definition were excluded. This assessment was conducted iteratively to ensure accuracy.

3. Thematic categorization

Each retained standard was assigned to one of the following thematic categories and subcategories. Categorization helps users to navigate the standards landscape more easily. Categories were defined as follows:

- Natural Systems: Standards related to the interconnected networks of living and non-living components functioning without direct human intervention. Subcategories: Air quality, soil quality, water quality, arctic ecosystem, marine ecosystem, biodiversity, meteorology.
- Environmental Pressures: Standards related to natural or anthropogenic threats with potential adverse environmental and societal impacts.

 Subcategories: Climate change, emissions, greenhouse gases, pollution.
- Geographical Information / Geomatics: Standards related to spatially referenced data and technologies for environmental representation. Subcategories: Geographic information, environmental data representation.
- Corporate Performance: Standards related to organizational outcomes related to environmental responsibility and compliance. Subcategories: Environmental management, lifecycle assessments (LCA).
- Product Sustainability: Standards related to life-cycle-based environmental, social, and economic performance of products.
 Subcategories: Circular economy, ecolabeling, sustainability in buildings.
- Green Finance: Standards related to financial disclosures, environmental performance evaluation in financial terms, and green debt instruments.
- Sustainable Data & Al: Standards related to the design, development, deployment and governance of data and Al systems.
 Subcategories: Artificial intelligence, Al system sustainability.

規格マッピングプロセス

1. 関連する専門委員会の特定

最初のステップは、環境データに関連する業務範囲を持つすべてのISO専門委員会(TC)を確認することでした。

2. 規格のスクリーニングとフィルタリング

選定された専門委員会(TC)によって開発されたすべての規格は、徹底的にレビューされました。関連性の判断は、専門委員会(TC)、規格の名称、および適用範囲/概要に基づいて行われました。UNEPの作業定義に合致しない規格は除外されました。この評価は、正確性を確保するために繰り返し実施されました。

3. テーマ別カテゴリー化

選定された規格は、以下のテーマ別カテゴリーおよびサブカテゴリーのいずれかに 分類されました。分類により、ユーザーは規格の全体像をより容易に把握できます。 カテゴリーは以下のように定義されました。

- 自然システム:人間の直接的な介入なしに機能する,生物と非生物の構成要素の相互接続されたネットワークに関連する規格サブカテゴリー:大気質,土壌質,水質,北極生態系,海洋生態系,生物多様性,気象
- 環境圧力:環境および社会に悪影響を及ぼす可能性のある自然または人為的脅威に 関連する規格
 サブカテゴリー: 気候変動、排出、温室効果ガス、汚染
- → 地理情報/ジオマティクス:空間参照データおよび環境表現技術に関する規格
 サブカテゴリー: 地理情報,環境データ表現
- ・企業パフォーマンス:環境責任とコンプライアンスに関する組織の成果に関連する規格 サブカテゴリー:環境マネジメント、ライフサイクルアセスメント(LCA)
- 製品の持続可能性:製品のライフサイクルベースの環境、社会、経済パフォーマンスに 関連する規格 サブカテゴリー:循環型経済、エコラベリング、建物の持続可能性
- グリーンファイナンス:財務情報開示、財務的な環境パフォーマンス評価、グリーン債務 商品に関連する規格
- → 持続可能なデータとAI: データおよびAIシステムの設計、開発、導入、ガバナンスに関連する規格
 サブカテゴリー: 人工知能、AIシステムの持続可能性

4. Classifying standards to data lifecycle stages

Each standard was also mapped to its most relevant stage of the environmental data lifecycle.

This clarified the functional role of each standard and supports strategic planning across the data value chain. Lifecycle stages are defined as follows:

Data Collection:

Gathering data from various sources.

Data Processing:

Organizing, transforming, or cleaning data.

Data Analysis:

Systematic investigation of data patterns and flows.

Data Sharing/ Dissemination:

Distribution of data to stakeholders.

Secure retention of data.

Data Governance:

Policy development and enforcement for data management.

4. データライフサイクルの段階への規格の分類

各規格は、環境データライフサイクルの最も関連性の高い段階にマッピングされました。これにより、各規格の機能的役割が明確になり、データバリューチェーン全体の戦略計画をサポートします。ライフサイクルの段階は次のように定義されます。

データ収集:

さまざまなソースからデータ収集

データ処理:

データの整理,変換,または クリーニング

データ分析:

データパターンとフローの体系 的な調査

データの共有/発信:

ステークホルダーへのデータの 配信

データの保管/アーカイブ:

データの安全な保管

データガバナンス:

データ管理に関するポリシーの 策定と実施

5. Quality assurance

To ensure methodological rigor, each standard was independently reviewed by two analysts. This four-eyes principle was applied throughout the process. Peer validation enhances reliability and minimizes individual bias in classification.

6. Tool development and feedback

Based on the data collected during the standards mapping process, an interactive Power BI dashboard was developed to visualize and explore the mapped standards.

The dashboard was tested with a group of users (N=10) through a structured survey. Participants included subject matter experts in global environmental data, UX and communications professionals, and researchers specializing in standards.

The goal of this testing phase was to assess the dashboard's clarity, navigability, and relevance to different user needs. Feedback from this diverse group informed refinements to the categorization logic and user interface, ensuring the tool is both technically robust and user-friendly.

5. 品質保証

方法論の厳密性を確保するため、各規格は2名のアナリストによって独立してレビューされました。この「4つの目」の原則は、プロセス全体を通して適用されました。ピア検証は信頼性を高め、分類における個人の偏りを最小限に抑えます。

6. ツールの開発とフィードバック

規格マッピングプロセスで収集されたデータに基づき、マッピングされた規格を視覚化し、探索するためのインタラクティブなPower BIダッシュボードが開発されました。

ダッシュボードは,構造化アンケートを通じて,ユーザーグループ(N=10)でテストされました。参加者には,地球環境データの専門家,UXおよびコミュニケーションの専門家,規格を専門とする研究者が含まれていました。

このテストフェーズの目標は、ダッシュボードの明瞭性、操作性、そして様々なユーザーニーズへの適合性を評価することでした。多様なグループからのフィードバックに基づき、分類ロジックとユーザーインターフェースを改良し、ツールが技術的に堅牢かつユーザーフレンドリーであることを確保しました。

Limitations

While this methodology provides a robust framework for mapping environmental data standards, it is important to acknowledge potential limitations. These include:

- The evolving nature of international standards and the need for periodic updates to the dashboard.
- Language and accessibility barriers in reviewing non-English standards.
- The possibility of emerging thematic areas not yet captured in current categories.

Future work

Future work could include:

- Integrating data on standards mapped by other SDOs including regional standards bodies - to provide a comprehensive database on environmental data standards
- Integrating automated classification tools
- Incorporating ongoing user feedback to refine the dashboard and methodology.

Contact

For more information about the research or methodology, please contact the Standards Australia Research Team at: research@standards.org.au.

For information about ISO's Environmental Sustainability programme or future projects/ collaboration, please contact climate@iso.org.

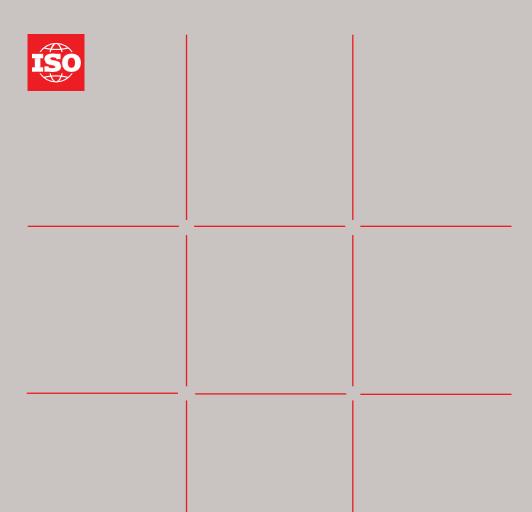
制限事項

この方法論は環境データ規格のマッピングのための堅牢なフレームワークを提供しますが、潜在的な制限事項を認識することが重要です。制限事項には以下が含まれます。

- 国際規格の進化とダッシュボードの定期的な更新の必要性
- 英語以外の規格のレビューにおける言語とアクセシビリティの障壁
- 現在のカテゴリーにまだ含まれていない、新たなテーマ領域が出現する可能性

今後の取り組み

今後の取り組みには以下が含まれます。


- ⊘ 自動分類ツールの統合
- 継続的なユーザーフィードバックを取り入れ、ダッシュボードと方法論を改良すること

お問い合わせ先

本研究または調査方法論に関する詳細については、オーストラリア規格協会 (Standards Australia)研究チーム (research@standards.org.au)までお問い合わせください。

ISOの環境持続可能性プログラムまたは今後のプロジェクト/連携に関する詳細は、climate@iso.orgまでお問い合わせください。

International Organization for Standardization

ISO Central Secretariat Chemin de Blandonnet 8 1214 Geneva, Switzerland

© ISO, 2025 All rights reserved 無断転載禁止 ISBN 978-92-67-11457-6 本文書は経済産業省の委託事業の成果です。

© JISC/JSA 2025 記載内容の一部及び全てについて 無断で編集, 改編, 販売, 翻訳, 変 造することを固く禁じます。